Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries.

نویسندگان

  • Joel D Rudney
  • Pratik D Jagtap
  • Cavan S Reilly
  • Ruoqiong Chen
  • Todd W Markowski
  • LeeAnn Higgins
  • James E Johnson
  • Timothy J Griffin
چکیده

BACKGROUND The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. RESULTS In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. CONCLUSIONS Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel compound to maintain a healthy oral plaque ecology in vitro

OBJECTIVE Dental caries is caused by prolonged episodes of low pH due to acid production by oral biofilms. Bacteria within such biofilms communicate via quorum sensing (QS). QS regulates several phenotypic biofilm parameters, such as biofilm formation and the production of virulence factors. In this study, we evaluated the effect of several QS modifiers on growth and the cariogenic potential of...

متن کامل

Artificial dental plaque biofilm model systems.

Difficulties with in vivo studies of natural plaque and its complex, heterogeneous structure have led to development of laboratory biofilm plaque model systems. Technologies for their culture are outlined, and the rationale, strengths, and relative uses of two complementary approaches to microbial models with a focus on plaque biodiversity are analyzed. Construction of synthetic consortia biofi...

متن کامل

Analysis of the antimicrobial and anti-caries effects of TiF4 varnish under microcosm biofilm formed on enamel

Titanium tetrafluoride (TiF4) is known for interacting with enamel reducing demineralization. However, no information is available about its potential antimicrobial effect. OBJECTIVES This study evaluated the antimicrobial and anti-caries potential of TiF4 varnish compared to NaF varnish, chlorhexidine gel (positive control), placebo varnish and untreated (negative controls) using a dental mi...

متن کامل

Reducing dental plaque formation and caries development. A review of current methods and implications for novel pharmaceuticals.

Dental caries is an oral disease, which has a high worldwide prevalence despite the availability of various prophylactic means, including the daily use of fluoride toothpastes, water fluoridation, dental sealants, oral health educational programs and various antiseptic mouth-rinses. One important reason for this is uncontrolled increase in consumption of foods containing considerable sucrose co...

متن کامل

Inhibition of the Quorum Sensing System (ComDE Pathway) by Aromatic 1,3-di-m-tolylurea (DMTU): Cariostatic Effect with Fluoride in Wistar Rats

Dental caries occurs as a result of dysbiosis among commensal and pathogenic bacteria leading to demineralization of enamel within a dental biofilm (plaque) as a consequence of lower pH in the oral cavity. In our previous study, we have reported 1,3-disubstituted ureas particularly, 1,3-di-m-tolylurea (DMTU) could inhibit the biofilm formation along with lower concentrations of fluoride (31.25 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiome

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015